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1. INTRODUCTION
Birefringence is the optical property of a material having a re-
fractive index that depends on the polarization and propaga-
tion direction of light [1,2]. In optical fibers, the birefringence
effect is detrimental for a variety of reasons. The Brillouin gain
depends on the state of polarization (SOP) in the fiber [3–6],
and unintended birefringence causes the polarization of the
optical field to change during propagation through the fiber,
which induces power fluctuations [5], especially in the stimu-
lated Brillouin scattering (SBS) process [4]. The local refrac-
tive index changes associated with density fluctuations cause
the Brillouin spectrum shape to change and the Brillouin
frequency peak position to shift [6]. Such induced Brillouin
peak shift and spectral distortions may be attributed to local
temperature or strain change, and cause error in distributed
temperature and strain measurement [7–9]. In [10], the
Brillouin gain spectra were shown to be strongly influenced
by thermal stress.

It is important to devise a comprehensive characterization
of the SBS process in the presence of birefringence in an op-
tical fiber, so that a prediction of the Brillouin frequency shift
and birefringence variation over different sensing lengths can
be made. All previous theoretical works [3–5,11–14] are re-
lated to the Brillouin gain variation due to the SOP change.
Although the effects of fiber birefringence on Brillouin fre-
quency shift and linewidth have been studied experimentally
[15], no report has been made regarding the Brillouin fre-
quency shift associated with the SOP and birefringence
change in relation to the fiber position.

A quantitative study of the fiber birefringence versus fre-
quency shift is essential in finding the maximum impact of
fiber birefringence on the measurement precision of temper-
ature and strain, for distributed Brillouin optical time domain
analysis (BOTDA) or Brillouin optical time domain reflectom-
etry (BOTDR) sensors, as it will be helpful in designing the

best suitable fiber for BOTDA or BOTDR applications as well
as optimizing system design.

Among early works that investigate the polarization effects
on SBS in optical fibers, Refs. [3,5,11,12] showed that the
Stokes gain is strongly dependent on polarization effects,
and in [16] this theoretical work was experimentally con-
firmed. Reference [13] examines the applications of optical
birefringence in SBS sensing for strain and temperature mea-
surements, while [4] devises a technique to overcome the sen-
sitivity of pulse delay to polarization perturbations, enhancing
SBS slow light delay. In [14], a vector formalism was used to
characterize the effects of birefringence on the SBS interac-
tion. One such effect was signal broadening as a result of
polarization effects. However, only linearly polarized (LP)
pump and signal waves were investigated in [13,14]. Addition-
ally, [14] assumed an undepleted pump regime, which has ap-
plications only for short fiber lengths, while the BOTDA and
BOTDR often operate on long fiber distances; the convolution
of the birefringence and depletion would induce much larger
distortion on the Brillouin spectrum, and hence lower the tem-
perature and strain resolution. Thus the undepleted and LP
models are not adequate to address real problems.

The above-mentioned works [5,11,12,14,16], however, treat
a steady-state SBS system in which both the pump wave (PW)
and the Stokes wave (SW) are continuous. Additionally, none
of these references investigated the effect of birefringence
and polarization effects on the spectral distortion—namely
Brillouin frequency shift—of pulses undergoing SBS. In [4],
though pulse length was taken into account, Brillouin spec-
trum distortion was not. More importantly, the impact of
the nonlinear effect under different pump powers convoluted
with fiber birefringence and its impact on the Brillouin spec-
trum shape and peak shift have not been examined yet. An
extension of [14] was published in the work [17], whereby sig-
nal pulses were taken into consideration and pulse distortion
was observed. However, this work still did not take into
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consideration the most general case of birefringence, which is
elliptical birefringence.

It is important to investigate a more accurate model of the
polarization-dependent SBS interaction, which includes the
case of elliptical birefringence. The model presented in this
manuscript describes equations that can be thought of as
the most comprehensive SBS equations considering the bire-
fringence effects in an optical fiber. Besides being able to ac-
commodate the most general case of elliptical birefringence,
the effects of polarization mode dispersion (PMD), polariza-
tion dispersion loss (PDL), phonon resonance structures,
pulse length, and the overall attenuation of the fiber have been
taken into account.

This manuscript will introduce several important applica-
tions of birefringence in optical fibers, relating to telecommu-
nications and fiber sensing. The effect of the spectral shift due
to increased birefringence is investigated. Additionally, spec-
tral distortion due to various degrees of birefringence will be
investigated for steady-state and transient pulsed regimes.
Namely, the steady-state model presented for LP light will be
shown to be a valuable measure of the experimentally realistic
case of nonideal LP light in optical fibers. The degree of spec-
tral distortion may be used as an indication of the quality of
linear polarization during the SBS interaction or as a measure
of power leaking between the fast and slow modes. Further-
more, increased power leaking between the fast and slow
modes for LP can be used to create a regime that is more fa-
vorable for sensing applications related to SBS. In the pulsed
regime, spectral broadening and depletion of the Stokes spec-
trum will be observed as a result of increased birefringence.
Spectral distortion is detrimental for fiber sensing and tele-
communications; hence methods of minimizing this effect
are important for these applications.

Additionally, the effects of various elliptical polarizations
on output spectral shape will be investigated for the
steady-state model, including spectral hole burning effects
and spectral broadening. Methods for maintaining a pulse
fidelity and full width at half-maximum (FWHM), as compared
to nonpolarized light in a nonbirefringent fiber, will be
proposed.

2. MODEL
The process of SBS has been studied in a birefringent polari-
zation-maintaining optical fiber (PMF) with a core radius of
4.1 μm. The configuration is composed of a PW launched into
one end, and a SW launched into the other end. Both the PW
and SW have x and y eigenpolarization components. The sche-
matic arrangement is shown in Fig. 1.

In the slowly varying amplitude approximation, the interac-
tion between the PW, the SW, and the corresponding acoustic
wave (AW), as shown in Fig. 1, is described by the system of
Eqs. (1.1)–(1.4). Other than the usual slowly varying ampli-
tude approximation, the only additional approximation in es-
tablishing the following equations is the assumption that the

phonon fields are established almost simultaneously—which
is not a bad approximation for the majority of practical cases
[1,18,19]. The derivation of the system of Eqs. (1.1)–(1.4) is
shown in Appendix A:
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Here, ΩBxx � �v∕c��n1xω1 � n2xω2�, ΩByy � �v∕c��n1yω1�
n2yω2�, ΩBxy � �v∕c��n1xω1 � n2yω2�, and ΩByx � �v∕c�
�n1yω1 � n2xω2� are the Brillouin frequencies associated with
the principal axis beatings [6], where ω1 is the angular fre-
quency of the PW, and ω2 is the angular frequency of the
SW. n1x and n1y, and n2x and n2y, are the indices of refraction
associated with the principal axes of the PW and SW, respec-
tively. Ω is the angular frequency of the AW caused by the in-
teraction of the PW and SW. E1x and E1y, and E2x and E2y, are
the complex amplitudes of the PW and the SW, respectively. c
is the speed of light, ρ0 is the mean density of the fiber, γe is the
electrostrictive constant, z is the coordinate along the fiber, v
is the speed of sound in the fiber, ΓB is the Brillouin linewidth,
and finally, α1x, α1y, α2x, and α2y represent the fiber attenua-
tions of the principal axes of polarization of the two interact-
ing waves.

S1x, S1y, S2x, and S2y represent the Stokes vectors in the
Poincaré sphere polarization representation [20,21], and are
used to define the polarization of the propagating lights
[2,20]. Some extra relations of importance are the following:

Fig. 1. Schematic arrangement of SBS in an optical fiber of length L:
E1x, PW; E1y, PW; E2x, SW; E2y, SW.
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Sx1 � −Sy1 for forward propagating light (PW) and Sx2 � −Sy2
for backward propagating light (SW). Furthermore, it is
worthwhile to emphasize that in the above system of
Eqs. (1.1)–(1.4), Sx1 describes the principal SOP vector for
the forward propagating light, and Sx2 describes the principal
SOP vector of the backward propagating light. In this case, if
Sx1 is defined as Sx1 � �a; b; c�, then it must follow that
Sy1 � �−a;−b;−c�, and neglecting the dispersion effect, Sx2 �
�a; b;−c� and Sy2 � �−a;−b; c�, where a, b, and c are the Stokes
vector components—the third component, c, describing circu-
lar birefringence—and are normalized such that a2 � b2�
c2 � 1. From this arrangement it is apparent that for fibers
having elliptical birefringence (0 < jcj < 1�, the most general
beating situation will be excited; i.e., there will exist four
acoustic resonances.

Lastly, the remaining simplifications were introduced to the
system of Eqs. (1.1)–(1.4) to make the birefringence effect
more explicit. This can be justified by the fact that birefrin-
gence and polarization-dependent loss are both small. It is
defined n̄1 � �n1x � n1y�∕2, Δn̄1 � n1x − n1y, n̄2 � �n2x�
n2y�∕2, Δn̄2 � n2x − n2y and ᾱ1 � �α1x � α1y�∕2, Δᾱ1 �
α1x − α1y, ᾱ2 � �α2x � α2y�∕2, Δᾱ2 � α2x − α2y.

In the above arrangement, the PW input parameters are
known only at the beginning of the fiber, i.e., at z � 0. Corre-
spondingly, the SW input parameters are known only at the
end of the fiber, i.e., at z � L, where L is the length of the fiber.
Therefore, the boundary conditions for the system of
Eqs. (1.1)–(1.4) are similar to previously studied configura-
tions with one pulse [6,22]. The conditions for two pulses
are as follows:

jE1x�0�j2 � E2
1x0; jE1y�0�j2 � E2

1y0;

jE2x�L�j2 � E2
2x0; jE2y�L�j2 � E2

2y0; (2)

where E2
1x0, E

2
1y0, E

2
2x0, and E2

2y0 are known squared absolute

values of the complex fields E1x, E1y, E2x, and E2y, respec-
tively. In the dimensionless notation, the system [Eq. (1)
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In the above system of Eqs. (3.1)–(3.4), we have employed the
dimensionless length variable l � z∕L, and the dimensionless
time variable τ � t∕tc, where tc � L · navg∕c is the transit time,
navg is the average index of refraction, and r is the radius of
the fiber core. The dimensionless intensity variables are
defined as the ratio of powers Y 1x � P1x∕P1x0, Y 1y �
P1y∕P1y0, Y 2x � P2x∕P2x0, and Y 2y � P2y∕P2y0. Additionally,
ε1x, ε1y, ε2x, and ε2y are the dimensionless loss terms, defined
as ε1x � 2Lα1x, ε1y � 2Lα1y, ε2x � 2Lα2x, and ε2y � 2Lα2y. The
form factor component of the β coefficients is defined as
ξij � �ΩBij − Ω∕�ΓB∕2��, where i � x; y and j � x; y. The
method of characteristics was employed as in [2,23–25],
and the following change of variables was used, where the
approximation n̄1 ≈ n̄2 � n̄ was used:

u � 1
n̄
τ� l; (5)

v � 1
n̄
τ − l: (6)

The resulting system of equations is as follows, with β coef-
ficients as defined in expressions (4.1)–(4.8):
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dY 2y

dv
� �β3cY 1y � β3dY 1x�Y 2y − ε2yY 2y: (7.4)

The change of variables u and v transforms the system of
Eqs. (3.1)–(3.4) of counterpropagating waves into the system
of Eqs. (7.1)–(7.4) of copropagating waves. Consequently, we
are able to set the following initial conditions:

Yij0�t; 0� � �tanh�a1�t − b1��� · �tanh�−a2�t − b2��� � 1; (8)

both of which take place at the same end of the new coordi-
nate system, where i � 1, 2 and j � x; y. The parameters a1
and a2 determine the rise time of the PW and SW pulse pro-
files, while the parameters b1 and b2 define the center of the
pulses.

Though there exist many numerical methods of solution for
SBS equations [23,26–31], the fourth-order Runge–Kutta
method (RK4) was used to numerically solve the system of
Eqs. (7.1)–(7.4), and was chosen for its stability and relatively
large step size. Details of this numerical method of solution
are summarized in Appendix A.

3. RESULTS AND DISCUSSION
Output spectra were calculated by detuning the Stokes fre-
quency, ω2. Output powers were calculated as P1x-out �
P1x0 · Y 1x-out, P1y-out � P1y0 · Y 1y-out, P2x-out � P2x0 · Y 2x-out,
and P2y-out � P2y0 · Y 2y-out, and the total powers of the PW
and the SW were calculated to be P1 � P1x � P1y and
P2 � P2x � P2y, respectively. Also, the attenuation in the fiber

has been approximated as α1x � α1y � α2x � α2y �
α � 0.2 dB∕km, and the following parameters of the fiber
were used: navg � 1.45, γe � 0.902, λ � 1550 nm,

ρ0 � 2.21 g∕cm3, v � 5616 m∕s, and ΓB � 0.1 GHz. The
following indices of refraction will be used to represent the
elliptical birefringence, Δn, of 10−4, 10−5, 10−6, and 10−10,
respectively:

Δn � 10−4 Δn � 10−5

n1x � 1.4508 n1x � 1.45008
n1y � 1.4502 n1y � 1.45002
n2x � 1.4503 n2x � 1.45003
n2y � 1.4504 n2y � 1.45004

Δn � 10−6 Δn � 10−10

n1x � 1.450008 n1x � 1.4500000008
n1y � 1.450002 n1y � 1.4500000002
n2x � 1.450003 n2x � 1.4500000003
n2y � 1.450004 n2y � 1.4500000004

A. Spectral Shift
The appearance of a fast and slow axis results in two optical
modes in the fiber with different SBS frequency shifts, causing
a mismatch in the corresponding momentum vectors of the
AWs, thereby making it impossible for both principal axes
to be resonant with the acoustic phonons. The mismatch in
phonon resonance causes a Brillouin shift, ΔυB, and the larger
the birefringence, the larger the Brillouin shift.

Figure 2 shows the magnitude of the Brillouin shift in the
output PW and SW spectra.

Fig. 2. (a) Output pump spectrum. (b) Output Stokes spectrum. Birefringence Δn: � 10−4; —10−5; ‐ ‐ ‐ 10−6; LHP(1,0,0); L � 1000 m.
P1x0 � 0.5 mW, P1y0 � 0.5 mW, P2x0 � 0.5 mW, and P2y0 � 0.5 mW.
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The Brillouin shift, ΔυB, was measured as a function of beat
length, which is defined in expressions (9) and (10) [6]:

LB � 2π
j�k1x � k2x� − �k1y � k2y�j

; (9)

where

kij �
nij

c
ωi; i � 1; 2; and j � x; y: (10)

Figure 3 summarizes the simulated values of ΔυB, in compari-
son to the beat length for LP light. Two cases were compared
for pump and Stokes input powers of 1 mW: (a) the input
powers of the x and pump wave components of the PW
and the SW were taken to be unequal, and (b) the input
powers of the x and y components of the PW and the SWwere
taken to be equal. From Fig. 3, it is apparent that the degree of
birefringence has a nonlinear effect on the Brillouin shift ΔυB;
in particular, the larger the birefringence, the larger the shift.
This spectral shift can in turn be used to quantify the birefrin-
gence of the optical fiber upon measurement of the output sig-
nal. In addition, the spectral shift appears to be more
prominent for unequally balanced input powers of the x
and y components of the PW and the SW, as compared to
the case of equally balanced powers.

B. Spectral Distortion
1. Linear Polarization
The following simulations were performed for LP light.
Figure 4 shows the output spectra of the PW and the SW,
as well as close-ups of the spectral tips—both of which are
linearly horizontally polarized (LHP) in one simulation, and
linearly vertically polarized (LVP) in another, the resulting
spectra being identical for both LHP and LVP light.

It is often experimentally not possible to achieve a 100%
separation of power between the slow and fast modes of
the signal. There is power leakage between the x and y axes
[32], especially when additional optical components, such a
polarization controllers or scramblers [33,34], are used.
Hence, for a 11 mW signal, it is a realistic assumption that
as much as 1 mW of power could be present in the vertical
mode of the signals for LHP light. Likewise, for LVP lights,
it is also experimentally plausible to have as much as
1 mW of power in the horizontal mode of the signals.

The shape of the output spectra in Fig. 4 can be explained
by the modified interaction between the PW and the SW dur-
ing LP. Referring to the system of Eqs. (7.1)–(7.4) and β co-
efficients (4.1)–(4.3), (4.8), we see that the β coefficients
β1b, β1d, β3b, and β3d are reduced to zero for both LHP and
LVP light. As a result, the system [Eq. (7) is broken up into
two smaller systems consisting of (a) Eqs. (7.1) and (7.3)
and (b) Eqs. (7.2) and (7.4), respectively, which are indepen-
dent of each other. The first system describes the interaction
between the horizontal components (x components) of the
PW and the SW, and the second system describes the interac-
tion between the vertical components (y components) of the
PW and the SW. In other words, interactions along the x and y
components become independent from each other, which is
to be expected during linear polarization.

In Fig. 4, which shows the output pump and Stokes spectra
of LHP light for various pulse lengths, the little “blip” at the
bottom/top of the spectra is the y-component contribution,
while the “general” shape of the spectra is a result of the
x-component contribution. Since the power in the horizontal
mode is large for LHP light, the resultant depletion of the PW
and amplification of the SW are also large, leading to the gen-
eral trend of the output spectra in Fig. 4. This is the spectral
shape that would be expected for an idealized LHP light (or
perhaps light with no consideration for polarization at all).
However, the LHP is not ideal, and there exists a small inter-
action in the vertical component. Since the power along the y
axis is small, the resultant contribution is also small. As can be
seen from Fig. 4, the smaller the power in the y component,
the smaller the contribution, and the weaker the spectral
distortion of the graph. In other words, increasing powers
in the y components increase the degree of spectral distortion.
For P1y � P2y � 1 mW, the spectral “blip” is much larger than
for the case in which P1y � P2y � 0.1 mW, which is practi-
cally nonexistent. However, while a smaller power leakage
causes a smaller spectral distortion or “blip”, it yields output
spectra with a larger depletion, or “flat-top,” than in the case
of larger power leakage. For the steady-state regime, shown in
Figs. 4(a) and 4(b), where both the PW and the SW are con-
tinuous waves, the “flat-top” effect is more prominent, and the
spectral “blip” is less pronounced, as compared to shorter
pulse lengths of 240 and 79 ns, shown in Figs. 4(c) and 4(d)
and Figs. 4(e) and 4(f), respectively. With decreasing temporal
pulsewidth, the power leakage causes the distorted spectral
tip to be sharper and more pronounced, as compared to
longer pulses.

For sensing applications, it is detrimental to have a de-
pleted spectrum [7–9], since depletion and spectral flattening
make it difficult to accurately measure the center frequency of
the spectrum. Although the distorted spectra with smaller
depletion, obtained from the steady-state interaction of the
PW and the SW, may not have a sufficiently prominent spec-
tral tip for sensing applications, it is an improvement nonethe-
less, as compared to the case of larger depletion, in which the
“flat-top” spans an even larger frequency range.

As shown in Figs. 4(e) and 4(f), a shorter pulse length of
79 ns undergoing spectral leakage between the fast and slow
modes has a sufficiently prominent spectral tip for measure-
ment in sensing applications. As such, by using the distortion
effects caused by birefringence to our advantage, it is possible
to provide a regime that is favorable for sensing applications

Fig. 3. Brillouin shift dependence on beat length; L � 1000 m, LHP
(1,0,0). (a) P1x0 � 0.9 mW, P1y0 � 0.1 mW, P2x0 � 0.9 mW, and
P2y0 � 0.1 mW. (b) P1x0 � 0.5 mW, P1y0 � 0.5 mW, P2x0 � 0.5 mW,
and P2y0 � 0.5 mW.
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Fig. 4. Left: output pump spectrum. Right: output Stokes spectrum. (a), (b) steady state; (c), (d) 240 ns pulse; (e), (f) 79 ns pulse; birefringence
Δn � 10−4, L � 1 km. –··–: P1x0 � 10.0 mW, P1y0 � 1.0 mW, P2x0 � 10.0 mW, and P2y0 � 1.0 mW; LHP (1,0,0).—: P1x0 � 10.9 mW, P1y0 � 0.1 mW,
P2x0 � 10.9 mW, and P2y0 � 0.1 mW; LHP (1,0,0). ‐ ‐ ‐: P1x0 � 10.0 mW, P1y0 � 1.0 mW, P2x0 � 10.0 mW, and P2y0 � 1.0 mW; no pol (0,0,0).
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related to SBS, by increasing the power leakage between the
fast and slow modes, as well as decreasing the pulse length
during LP.

In the case of LVP, also shown in Fig. 4, the roles of the x
and y components are reversed, but the interaction is identi-
cal. For this reason, the two cases of LHP and LVP light,
shown in Fig. 4, give identical results, as in either case, the
interaction along the slow or fast axes remains the same.

Also, in Fig. 4, the output spectra of LP light for all pulse
lengths are shown in comparison to light without a depend-
ence on polarization, depicted by the dashed line—namely,
light having a Stokes vector S � �0; 0; 0�, which has been
taken to be a first-order approximation to truly unpolarized
light. The spectra of the LP are spread out in the frequency
domain, as compared to nonpolarized light in a nonbirefrin-
gent fiber. This effect can be explained by the nature of the
LP interaction between the PW and the SW. As discussed
above, when LP is not ideal, there exists a small independent
interaction along either the fast or the slow mode, contribut-
ing to the spectral distortion. The interaction along the main
axis of polarization, however, contributes the most to the
output spectral shape of the light—the SOP of the counterpro-
pagating waves being lined up for maximum gain
[3,11,12,14,16,17]. Additionally, since this interaction is strong,
and the input powers along the main mode are comparatively
large, the output light experiences a significant gain/depletion,
causing the spectrum itself to be larger and inherently spread
out [9]. This effect does not present itself for unpolarized light,
where there cannot be polarization alignment for maximum
gain. All four lights interact with each other, and as a result,
the output spectrum is smaller, which contributes to less spec-
tral spreading in the frequency domain.

As a result, the model presented for LP light proves to be a
valuable measure of the experimentally realistic case of

nonideal LP light in optical fibers, or a measure of power leak-
age between the fast and slow modes. The degree of spectral
distortion may be used as an indication of the quality of LP
during the SBS interaction.

2. Elliptical Polarization for Steady-State Interaction
In this section, the continuous PW and SW were simulated to
have several elliptical polarizations: Random 1 (0.1, 0.9, 0.42),
Random 2 (0.3, 0.7, 0.65), Random 3 (0.58, 0.58, 0.58), and
Random 4 (0.1, 0.9, 0.42). The effect of elliptical polarization
on the spectral shape of the output light was observed for
pump and Stokes input powers: (a) below the Brillouin thresh-
old and (b) above the Brillouin threshold [1,2].

In Fig. 5, the individual x and y components of the SW have
been plotted. Moderate powers have been chosen for various
degrees of birefringence: 10−4, 10−5, and 10−6. It can be seen
that the spectral distortion that results due to the birefrin-
gence is more prominent for higher degrees of birefringence
(10−4) as compared to lower degrees of birefringence (10−6).

In the most general case of elliptical birefringence, there
are four running AWs, each having its own resonance fre-
quency. As a result, each of the fast and slow modes has
its own resonant frequency, which is the cause of the multiple
peaks on the output spectra in Fig. 5.

In Figs. 6 and 7, input powers have been taken beyond the
Brillouin threshold for various elliptical polarizations. It can
be seen that certain polarizations cause a kind of spectral hole
burning effect [35,36] to take place in the output spectrum,
while others affect the spectral shape negligibly.

In Fig. 6, for example, the spectral hole burning effect can
be explained as a result of a very strong interaction along one
mode of the optical fiber, and weak interactions along the
other modes for the polarization Random 4 (0.1, 0.9, 0.42).
In Fig. 6, since the input power of the Stokes y component

Fig. 5. (a) x component of output Stokes spectrum. (b) y component of output Stokes spectrum. Birefringence Δn∶ � 10−4; —10−5; ‐ ‐ ‐10−6;
Random4 (0.1,0.9,0.42), L � 1000 m. P1x0 � 10.0 mW, P1y0 � 1.0 mW, P2x0 � 10.0 mW, and P2y0 � 1.0 mW.
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is so large (80 mW), and the corresponding vertical polariza-
tion component is also large (0.9), it acts to quickly deplete
power from the other modes, and since, as mentioned previ-
ously, there is no single resonant frequency, it does so along
multiple resonant frequencies. For polarizations Random 1
(0.6, 0.25, 0.76), Random 2 (0.3, 0.7, 0.65), and Random 3
(0.3, 0.7, 0.65), the combination of the relatively weak vertical
polarization component and the strong circular polarization
component almost eliminates the effect altogether. Polariza-
tions Random 1 and Random 2 are nearly identical to the
nonpolarized light; hence these polarizations can be used to
maintain the fidelity of the spectral shape to be as close as
possible to nonpolarized light, which is unaffected by

birefringence. Additionally, the effects of distortion on the
FWHM of the output pulse can be minimized, which has
numerous applications in communications and data
transmission.

A similar general spectral broadening effect can be ob-
served in Fig. 7, though because of the different power distri-
bution among the modes there is no longer a spectral hole
burning effect. In addition, polarizations Random 1, Random
2, and Random 3 are no longer nearly identical to the unpo-
larized light, due to the different interactions between the four
lights caused by varied initial power distributions.

As a result, it has been shown that elliptical birefringence
has a prominent effect on the spectral shape of the output PW

Fig. 6. (a) Output pump spectrum. (b) Output Stokes spectrum. Birefringence Δn: □ 10−6 Random 1 (0.6, 0.25, 0.76); ‐ ‐ ‐10−6 Random 2 (0.3, 0.7,
0.65); L � 1000 m ○ 10−6 Random 3 (0.58, 0.58, 0.58); * 10−6 Random 4 (0.1, 0.9,0.42); —10−10 no pol (0,0,0). P1x0 � 1.0 mW, P1y0 � 1.0 mW,
P2x0 � 1.0 mW, and P2y0 � 80.0 mW

Fig. 7. (a) Output pump spectrum. (b) Output Stokes spectrum. Birefringence Δn: □ 10−6 Random 1 (0.6, 0.25, 0.76); ‐ ‐ ‐10−6 Random 2 (0.3, 0.7,
0.65); L � 1000 m ○ 10−6 Random 3 (0.58, 0.58, 0.58); * 10−6 Random 4 (0.1, 0.9,0.42); —10−10 no pol (0,0,0). P1x0 � 10.0 mW, P1y0 � 1.0 mW,
P2x0 � 60.0 mW, and P2y0 � 1.0 mW.
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and SW. In some cases, it causes a spectral hole burning effect
as well as spectral spreading, while in other cases it is possible
to choose a polarization and power combination to minimize
the spectral distortion of the FWHM of the output pulse, and
maintain pulse fidelity.

4. CONCLUSION
In summary, it has been observed that the degree of birefrin-
gence, or beat length, is responsible for an observed Brillouin
shift, ΔυB, in the output PW and SW spectra. Polarization and
elliptical birefringence have a prominent effect on the spectral
shape of output light—in particular, nonideal LP light causes
spectral distortion, which appears in the shape of a “blip” on
top of the expected spectral shape, as well as spreading of the
spectrum in the frequency domain. As such, a good measure
for detecting nonideal LP light has been established. Addition-
ally, due to the smaller spectral depletion of the nonideal LP
light, which is preferable for sensing applications, a regime
that is preferable for measurement in sensing applications
has been proposed. Elliptical polarization and birefringence,
for moderate input powers of the PW and the SW, also cause
the spectrum to spread out in the frequency domain. For high
input powers, a spectral hole burning effect is predicted for
certain elliptical polarizations. Other elliptical polarizations
provide means for maintaining the FWHM and pulse fidelity
of the Brillouin spectral shape—even for powers beyond
the Brillouin threshold.

APPENDIX A
1. Derivation of the System of Eqs (1.1)–(1.4)
Let us consider the simple case of two propagation constants
in the fiber, calling them x⁀ and y⁀ for now. If a light with an
angular frequency ω was injected in the fiber, the electric
fields could be written in the following form, in terms of their
principal axis of polarization:

jE1�z; t�i � Ex expfi�kxz − ωt�gj x⁀i � Ey expfi�kyz − ωt�gj y⁀i:
(A1)

We have h x⁀j x⁀i � 1 � h y⁀j y⁀i and h x⁀j y⁀i � 0. Considering
two counterpropagating beams in the fiber, we can individu-
ally write them for the positive z-propagating light,

jE1�z; t�i � E1x expfi�k1xz − ω1t�gj x⁀1i
� E1y expfi�k1yz − ω1t�gj y⁀1i; (A2)

and the negative z-propagating light,

jE2�z; t�i � E2x expfi�−k2xz − ω2t�gj x⁀2i
� E2y expfi�k2yz − ω2t�gj y⁀2i: (A3)

The beating via electrostriction in the fiber due to the two light
waves can be written explicitly:

hE2�z; t�jE1�z; t�i
� E1xE�

2x expfi��k1x � k2x�z − �ω1 − ω2�t�gh x⁀2j x⁀1i
� E1yE�

2y expfi��k1y � k2y�z − �ω1 − ω2�t�gh y⁀2j y⁀1i
� E1xE�

2y expfi��k1x � k2y�z − �ω1 − ω2�t�gh y⁀2j x⁀1i
� E1yE�

2x expfi��k1y � k2x�z − �ω1 − ω2�t�gh x⁀2j y⁀1i: (A4)

In the most general case of elliptical birefringence, we will
have h x⁀2j x⁀1i ≠ 1 ≠ h y⁀2j y⁀1i and furthermore h y⁀2j x⁀1i ≠
0 ≠ h x⁀2j y⁀1i. The direct physical consequence of this is that
there are now four acoustic running waves.

Taking the steady-state approximation, we have the com-
plex acoustic field amplitude for the simplest case of zero
birefringence:

Δρ � γeqq

Ω2
B −Ω2

− iΓBΩ
hE2�z; t�jE1�z; t�i (A5)

To generalize the result to the case of elliptical birefringence,
where it is expected to have the corresponding resonance fre-
quency associated with the principal birefringence axes, we
make ΩB functions of the polarization principal axis beatings
[6]. Using the approximation q � k1 � k2 � 1

c �n1ω1�
n2ω2� ≅ 2�n̄ ω̄ ∕c�, where n̄ and are taken to be the averages
of n1 and n2, and ω1 and ω2, respectively, it is then possible
to have the following approximate complex acoustic field
amplitudes,

Δρ � γen̄ ω̄

cv
1

�ΩBxx −Ω� − i ΓB
2

E1xE�
2x expfi��k1x � k2x�z

− �ω1 − ω2�t�gh x⁀2j x⁀1i

� γen̄ ω̄

cv
1

�ΩByy −Ω� − i ΓB
2

E1yE�
2y expfi��k1y � k2y�z

− �ω1 − ω2�t�gh y⁀2j y⁀1i

� γen̄ ω̄

cv
1

�ΩBxy −Ω� − i ΓB
2

E1xE�
2y expfi��k1x � k2y�z

− �ω1 − ω2�t�gh y⁀2j x⁀1i

� γen̄ ω̄

cv
1

�ΩByx −Ω� − i ΓB
2

E1yE�
2x expfi��k1y � k2x�z

− �ω1 − ω2�t�gh x⁀2j y⁀1i: (A6)

Paying attention to the original case without birefringence
in Eq. (A5), it is possible to generalize our result. Recall that
nonbirefringent lights were assumed to undergo ideal power
transfer between the PW and the SW, as would be the case
when both of these waves are parallel polarized (under the
slowly varying amplitudes, A1 and A2, approximation),

∂A1

∂z
� n

c
∂A1

∂t
� αA1 � i

γeω1

2ρ0nc
Δρ · A2 (A7.1)

−

∂A2

∂z
� n

c
∂A2

∂t
� αA2 � i

γeω2

2ρ0nc
Δρ� · A1: (A7.2)

In Eqs. (A7.1) and (A7.2), ρ0 is the mean density of the fiber.
Generalizing the above system of Eq. (A7) to the case of bi-
refringence we take the following:
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∂E1x

∂z
�n1x

c
∂E1x

∂t
�α1xE1x

� i
γeω1

2ρ0n1xc
γen̄ ω̄
cv

1

�ΩBxx −Ω�− iΓB
2

E1xE�
2xE2xh x⁀2j x⁀1ih x⁀1j x⁀2i

� i
γeω1

2ρ0n1xc
γen̄ ω̄
cv

1

�ΩBxy −Ω�− iΓB
2

E1xE�
2yE2yh y⁀2j x⁀1ih x⁀1j y⁀2i;

(A8.1)

∂E1y

∂z
� n1y

c

∂E1y

∂t
� α1yE1y

� i
γeω1

2ρ0n1yc
γen̄ ω̄

cv
1

�ΩByy − Ω� − i ΓB
2

E1yE�
2yE2yh y⁀2j y⁀1ih y⁀1j y⁀2i

� i
γeω1

2ρ0n1yc
γen̄ ω̄

cv
1

�ΩByx −Ω� − i ΓB
2

× E1yE�
2xE2xh x⁀2j y⁀1ih y⁀1j x⁀2i; (A8.2)

−

∂E2x

∂z
�n2x

c
∂E2x

∂t
�α2xE2x

� i
γeω2

2ρ0n2xc
γen̄ ω̄
cv

1

�ΩBxx −Ω�− iΓB
2

E2xE�
1xE1xh x⁀1j x⁀2ih x⁀2j x⁀1i

� i
γeω2

2ρ0n2xc
γen̄ ω̄
cv

1

�ΩByx −Ω�− iΓB
2

E2xE�
1yE1yh y⁀1j x⁀2ih x⁀2j y⁀1i;

(A8.3)

−

∂E2y

∂z
�n2y

c
∂E2y

∂t
�α2yE2y

� i
γeω2

2ρ0n2yc
γen̄ ω̄
cv

1

�ΩByy −Ω�− iΓB
2

E2yE�
1yE1yh y⁀1j y⁀2ih y⁀2j y⁀1i

� i
γeω2

2ρ0n2yc
γen̄ ω̄
cv

1

�ΩBxy −Ω�− iΓB
2

E2yE�
1xE1xh y⁀2j x⁀1ih x⁀1j y⁀2i:

(A8.4)

The attenuations α1x, α1y, α2x, and α2y represent the fiber at-
tenuations of the principal axes of polarizations j x⁀1i, j y⁀1i,
j x⁀2i, and j y⁀2i, respectively. Finally, using the identity
j x⁀ih x⁀j � 1

2 �1� Sx · σ�, which links the Jones matrix unit vec-
tor to its Stokes vector Sx on the Poincaré sphere via the Pauli
matrix σ, as well as the simplifications for n̄1, Δn̄1, n̄2, Δn̄2, ᾱ1,
Δᾱ1, ᾱ2, and Δᾱ2, we arrive at the system of Eq. (1).

2. Fourth-Order Runge–Kutta Method of Solution
Using the RK4 numerical method, the solution of ᾱ1 system (7)
is summarized in Eqs. (A9.1)–(A9.4), where n is the temporal
step, and j is the spatial step:

Y 1x�n� 1; j � 1� � Y 1x�n; j� �
K1 � 2K2 � 2K3 � K4

6
;

(A9.1)

Y 1y�n� 1; j� 1� � Y 1y�n; j��
L1 � 2L2 � 2L3 � L4

6
; (A9.2)

Y 2x�n� 1; j � 1� � Y 2x�n; j� �
Q1 � 2Q2 � 2Q3 � Q4

6
;

(A9.3)

Y 2y�n� 1; j � 1� � Y 2y�n; j� �
R1 � 2R2 � 2R3 � R4

6
;

(A9.4)

where the coefficients Ki, Li, Qi, and Ri, where i � 1, 2, 3, 4,
are defined as

K1 � −⌊β1aY 2x�n; j� � β1bY 2y�n; j� � ε1x⌋ · Y 1x�n; j� · Δu;
(A10.1)

L1 � −⌊β1cY 2y�n; j� � β1dY 2x�n; j� � ε1y⌋ · Y 1y�n; j� · Δu;
(A10.2)

Q1 � ⌊β3aY 1x�n; j� � β3bY 1y�n; j� � ε2x⌋ · Y 2x�n; j� · Δv;
(A10.3)

R1 � ⌊β3cY 1y�n; j� � β3dY 1x�n; j� � ε2y⌋ · Y 2y�n; j� · Δv;
(A10.4)

K2 � −

�
β1a

�
Y 2x�n; j� �

Q1

2

�
� β1b

�
Y 2y�n; j� �

R1

2

�
� ε1x

�

·
�
Y 1x�n; j� �

K1

2

�
· Δu; (A11.1)

L2 � −

�
β1c

�
Y 2y�n; j� �

R1

2

�
� β1d

�
Y 2x�n; j� �

Q1

2

�
� ε1y

�

·
�
Y 1y�n; j� �

L1

2

�
· Δu; (A11.2)

Q2 �
�
β3a

�
Y 1x�n; j� �

K1

2

�
� β3b

�
Y 1y�n; j� �

L1

2

�
� ε2x

�

·
�
Y 2x�n; j� �

Q1

2

�
· Δv; (A11.3)

R2 �
�
β3c

�
Y 1y�n; j� �

L1

2

�
� β3d

�
Y 1x�n; j� �

K1

2

�
� ε2y

�

·
�
Y 2y�n; j� �

R1

2

�
· Δv; (A11.4)

K3 � −

�
β1a

�
Y 2x�n; j� �

Q2

2

�
� β1b

�
Y 2y�n; j� �

R2

2

�
� ε1x

�

·
�
Y 1x�n; j� �

K2

2

�
· Δu; (A12.1)
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L3 � −

�
β1c

�
Y 2y�n; j� �

R2

2

�
� β1d

�
Y 2x�n; j� �

Q2

2

�
� ε1y

�

·
�
Y 1y�n; j� �

L2

2

�
· Δu; (A12.2)

Q3 �
�
β3a

�
Y 1x�n; j� �

K2

2

�
� β3b

�
Y 1y�n; j� �

L2

2

�
� ε2x

�

·
�
Y 2x�n; j� �

Q2

2

�
· Δv; (A12.3)

R3 �
�
β3c

�
Y 1y�n; j� �

L2

2

�
� β3d

�
Y 1x�n; j� �

K2

2

�
� ε2y

�

·
�
Y 2y�n; j� �

R2

2

�
· Δv; (A12.4)

K4 � −⌊β1a⌊Y 2x�n; j� � Q3⌋� β1b⌊Y 2y�n; j� � R3⌋� ε1x⌋

· ⌊Y 1x�n; j� � K3⌋ · Δu; (A13.1)

L4 � −⌊β1c⌊Y 2y�n; j� � R3⌋� β1d⌊Y 2x�n; j� � Q3⌋� ε1y⌋

· ⌊Y 1y�n; j� � L3⌋ · Δu; (A13.2)

Q4 � ⌊β3a⌊Y 1x�n; j� � K3⌋� β3b⌊Y 1y�n; j� � L3⌋� ε2x⌋

· ⌊Y 2x�n; j� � Q3⌋ · Δv; (A13.3)

R4 � ⌊β3c⌊Y 1y�n; j� � L3⌋� β3d⌊Y 1x�n; j� � K3⌋� ε2y⌋

· ⌊Y 2y�n; j� � R3⌋ · Δv: (A13.4)
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